IQ and blood lead from 2 to 7 years:

Are the effects in older children the residual of high blood leads in 2 year olds?

Aimin Chen and Walter Rogan

Department of Health and Human Services
National Institutes of Health
National Institute of Environmental Health
Sciences

Blood lead concentration

- In US children, blood lead tends to peak at about 2 years, and then decline.
 - Prenatal exposure
 - Postnatal exposure: leaded paint (most houses built before 1980 contain some leaded paint), dust

FIG. 1. Arithmetic mean (±SD) PbB concentrations from 3 to 60 months of age.

Dietrich et al. Neurotoxicol Teratol 1993

Meta-analysis of prospective studies

Meta-analysis results:

$$(c) -0.9 (-2.0, 0.3)$$

Prospective studies: estimated change in full scale IQ (and 95% CI) for increase in blood lead from 10 to 20 µg/dl
Pocock et al. BMJ

Implication of peak lead effect

- To study threshold, need to recruit 2 year olds and follow them
- Screening of lead poisoning focusing on 1 and 2 year olds
- Clinical trials treating 2 year olds

Previous prospective studies

- In Boston, 57 mo and 10 y blood lead not associated with 10 y IQ
- In Cincinnati, mean blood lead during the 5th and 6th year associated with IQ at 6.5 years, but mean blood lead during the 2nd or 3rd year was not.
- In Rochester, concurrent blood lead and 5y IQ association slightly stronger than peak blood lead and 5y IQ association
- No study examined the question in detail

Study questions

What is the strength of the association between blood lead and IQ at various time points?

Do the cross-sectional associations seen in school age children represent residual effects from peak blood lead?

Treatment of Lead-exposicion (TLC) study

- Randomized placebo-controlled clinical trial of succimer, an oral chelator
- 1° outcome IQ
- 780 children aged 12-33 months with blood lead concentration 20-44 µg/dL
- Follow-up to 60 months after treatment (age 7)
- Multi-center: Baltimore, Newark, Philadelphia, and Cincinnati

Lead and IQ measurements

- Blood lead level (PbB)
 - randomization (baseline); day 7, 28, 42 of each course of treatment; every 3-4 months in the follow-up
- - Mental Development Index (MDI) from Bayley Scale of Infant Development-II (BSID-II) at baseline
 - Full scale IQ from Wechsler Preschool and Primary Scale of Intelligence-Revised (WPPSI-R) at 36 month follow-up
 - Full scale IQ from Wechsler Intelligence Scale for Children-III (WISC-III) at 60 month follow-up
 - Caregivers' IQ (88% mother) from Wechsler Adult Intelligence Scale-Revised (WAIS-R)

Blood lead level in TLC study

No IQ difference from treatment

36 mo follow-up

60 mo follow-up

Statistical analysis

- General linear models
- Untransformed blood lead
- Covariates: Clinical center, race/ethnicity, sex, language, parent's education, parent's employment, single parent, age at blood lead test, caregiver's IQ
- No treatment effect on IQ, so succimer and placebo groups combined

PbB baseline 36 mo follow-up 60 mo follow-up

Both prior and concurrent PbB in the model

- 5yIQ = 2yPbB + 5yPbB + Covariates
- 7yIQ = 2yPbB + 7yPbB + Covariates
- 7yIQ = 5yPbB + 7yPbB + Covariates

Results

- 396 children in succimer group, 384 in placebo group (total 780)
- Overall: African American 77%

Male 56%

Speaking English 95%

Parent < high school education 40%

Single parent 72%

On public assistance 97%

IQ by PbB modeled separately

Outcome	β (95% CI) per 10 μg/dL PbB			
	2y	5 y	7 y	
2y MDI	-2.9 (-4.7, -1.0)			
5y IQ	-2.3 (-4.1, -0.5)	-3.5 (-5.3, -1.7)		
7y IQ	-1.1 (-2.9, 0.7)	-2.9 (-4.8, -1.1)	-5.4 (-7.8, -2.9)	

Both prior and concurrent PbB in the model

Outcome	β (95%CI) per 10 μg/dL PbB			
	2y PbB	5y PbB	7y PbB	
5y IQ	-1.2 (-3.1, 0.7)	-2.9 (-4.9, -0.9)		
7y IQ	0.1 (-1.8, 2.0)		-5.0 (-7.6, -2.4)	
7y IQ		-1.2 (-4.1, 1.7)	-3.9 (-7.4, 0.0)	

- Categorize prior and concurrent PbB into one variable (by corresponding medians)
- To reduce but may not eliminate possible collinearity.

Category	2y PbB (µg/dL)	5y PbB (µg/dL)
1 (ref)	<median<sub>2y</median<sub>	<median<sub>5y</median<sub>
2	<median<sub>2y</median<sub>	≥Median _{5y}
3	≥Median _{2y}	<median<sub>5y</median<sub>
4	≥Median _{2y}	≥Median _{5y}

2y and 5y PbB on 5y IQ

PbB (µg/dL)		n	5y IQ	5y IQ
			Mean	Comparison
2 y	5 y			
<24.9	<11.4	227	84	referent
<24.9	≥11.4	137	79	-2.9 (-5.8, 0.1)
≥24.9	<11.4	138	82	0.4 (-2.5, 3.3)
≥24.9	≥11.4	228	78	-4.0 (-6.6, -1.5)

2y and 7y PbB on 7y IQ

PbB (µg/dL)		n	7y IQ	7y IQ
		n	Mean	Comparison
2 y	7 y			
<24.9	<7.2	187	89	referent
<24.9	≥7.2	114	85	-3.6 (-6.4, -0.7)
≥24.9	<7.2	121	89	-0.0 (-2.8, 2.7)
≥24.9	≥7.2	195	84	-3.7 (-6.2, -1.3)

5y and 7y PbB on 7y IQ

PbB (µg/dL)		n	7y IQ	7y IQ
		n	Mean	Comparison
5 y	7 y			
<11.4	<7.2	244	89	referent
<11.4	≥7.2	52	86	-2.3 (-5.9, 1.3)
≥11.4	<7.2	62	88	0.3 (-3.1, 3.7)
≥11.4	≥7.2	255	84	-3.8 (-6.0, -1.6)

Strengths and limitations

 Large sample size, degree of testing, quality control, longitudinal, high retention rate

 Restricted population, no Home Observation for Measurement of the Environment (HOME) score

Conclusions

- We found a stronger relationship between PbB at 7y and IQ at 7y than between IQ at 7y and the higher 2y PbB
- The strength of the cross-sectional association increases over time
- Results support the idea that lead exposure continue to be toxic to children as they reach school age, not all the damage was done by the time children were 2-3 year old

Implication

 Lead exposure at about school age may affect cognition, and it is better to always keep PbB low

The difficulties in preventing lead exposure ↑, but the potential for prevention ↑

Future work

- To examine the strength of the prospective and cross-sectional associations of lead and IQ using other cohorts
 - Individual cohort
 - Pooled or meta-analysis of several cohorts

Future work

- To study the prevention strategy that keeps blood lead low till school age and IQ improvement
 - Specific population in US with high lead exposure
 - Children in developing countries

Acknowledgments

- University of Cincinnati
 - Kim N. Dietrich
- Harvard University
 - James H. Ware
- CHOP and University of Pennsylvania
 - Jerilynn Radcliffe

- Other TLC researchers
- TLC study was supported by NIEHS in cooperation with NIH Office of Minority Health, and by CDC
- Succimer and placebo capsules were gifts from McNeil Labs, Fort Washington, PA